INTRAVENOUS CATHETERIZATION

PART 2
INTRAVENTOUS CATHETERIZATION

AUTHORS
Mike Muir AEMCA, ACP, BHSc
Paramedic Program Manager
Grey-Bruce-Huron Paramedic Base Hospital
Grey Bruce Health Services, Owen Sound

Kevin McNab AEMCA, ACP
Quality Assurance Manager
Huron County EMS

REVIEWERS
Lori Smith AEMCA, ACP, RN
Waterloo-Wellington-Dufferin Base Hospital

Rob Theriault EMCA, RCT(Adv.), CCP(F)
Peel Region Base Hospital

Updated December 2006
Angela Schotsman AEMCA, ACP
Hamilton Base Hospital

Slide production & animation
by Rob Theriault

2007 Ontario Base Hospital Group
STARTING AN I.V
USE ASEPATIC TECHNIQUE
NO EXCEPTIONS
STARTING AN I.V

BE SAFE WITH SHARPS

NO EXCEPTIONS
Preparing IV Equipment
Equipment to start an IV
- gloves (plus other PPE as needed)
- IV bag
- IV tubing
- tourniquet
- IV catheter
- alcohol swab
- 2 x 2 dressing
- transparent dressing
- strips of tape (3-4) 4-6” long
- sharps container
IV attempts: start at a distal site

then attempt proximal
Veins of the Hand
1. Digital Dorsal veins
2. *Dorsal Metacarpal veins*
3. Dorsal venous network
4. *Cephalic vein*
5. Basilic vein

Veins of the Forearm
1. Cephalic vein
2. *Median Cubital vein*
3. Accessory Cephalic vein
4. Basilic vein
5. Cephalic vein
6. Median antebrachial vein
Selecting I.V. site - tourniquet on

- vein anatomy, size of vein
- valves (stay away from)
- movement
- pulsation
- hardness
- presence of shunts
- sites with infection
- previously used sites (injured, sclerotic)
- reason for I.V (T.K.V.O, fluid therapy, medication)
- again, attempt access in a distal to proximal fashion
Preparation of the vein(s)

- place arm in dependant position (below the heart)
- tourniquet to block venous return
- warm skin
- flexion arm and hand
- gentle palpation / tapping
Tourniquet application and getting veins up
I.V procedure

- patient communication
- site selection
- assemble equipment (gloves)
- tourniquet applied
- cleanse site
- check catheter for integrity
- stabilize vein puncture with bevel up
- observe for flashback in chamber
- advance catheter 2mm further (drop angle)

- pull stylet 1-2mm back
- advance catheter at shallow angle
- release tourniquet
- apply transparent dressing
- place 2x2 under hub
- connect I.V site
- assess patency and regulate drip rate
- secure I.V tubing and site
- label site with size of catheter, time, date, initials, length of catheter
- communicate with partner
Cleaning Site
Catheterization
Attaching I.V Set
Complications of IV Therapy: Local/Systemic

Potential complications

- infiltration, extravasation - local
- infection - local or systemic
- fluid overload - systemic
- catheter/air embolism - systemic
- “speed shock” (cold fluid into core) - systemic
- phlebitis (chemical, mechanical) - local
- vasospasm - local
Possible complications

Infiltration
- accumulation of fluid (I.V. or blood, or medication) in tissue
- S&S: white, puffy, hard, cool, pain,
- treatment: discontinue I.V., restart I.V. away from site, chart the incident, including what was done to treat it (e.g. cold pack)

Extravasation
- I.V fluid is flowing into surrounding tissue instead of vein because vein wall is punctured, broken or catheter is outside of vein
Infection

Infection at insertion site
- cause: contaminated site or equipment
- S&S: swelling and tenderness at site

Systemic infection (Sepsis) due to invasion of bacteria, virus, or fungus into bloodstream
- onset 1-2 days post I.V, fever, chills, shaking, malaise, tachycardia, hypotension
- cause: use of contaminated equipment or solutions, contamination at site of venipuncture
Infection
PHLEBITIS
NOT USUALLY SEEN IN SHORT TERM I.V THERAPY
INFLAMATION OF VEIN WITH/WITHOUT CLOT FORMATION

Mechanical
❖ occurs due to motion and pressure of catheter on the endothelial wall

Causes
❖ catheter too large for vein, movement of catheter within the vein

Chemical
❖ occurs when an irritating solution is introduced with a catheter that is too large for the vein
❖ the relative occlusion of blood flow prevents adequate hemodilution of the solution
Phlebitis
Hematoma
Infiltration
Tissue Sloughing
Fluid Overload

- causes: excess fluid administration, renal failure, cardiac failure
- S&S: headache, hypertension, coughing, dyspnea, pulmonary edema, restlessness, JVD
- treatment: slow I.V to TKVO, oxygen, elevate head
- document and notify receiving hospital
Air Embolism

Air Embolism

- air inadvertently enters the vasculature and heads through the right side of the heart to the pulmonary circuit and blocks a pulmonary vessel
- 10 ml air can seriously harm or kill a patient

Signs & Symptoms

- clear chest (or wheezing), coughing, sudden onset of SOB, chest pain, dizziness
- tests – ABGs, lung scan, pulmonary angiogram

Treatment

- administer O₂, put pt. in sitting position, IVC filter
- Or - place pt. on left side with head down trapping air in right atrium
- report to hospital staff stat and document incident
CATHETER EMBOLISM

Catheter Embolism

- piece of catheter breaks off entering blood stream
- will travel to right side of heart and most likely will become lodged in pulmonary capillary bed causing signs and symptoms of a pulmonary embolism

- tests: CXR
- risk of PE, CVA, MI

DON’T RE-THREAD THE NEEDLE THROUGH THE CATHETER WHEN YOU MISS ON INITIAL ATTEMPT(S)
Factors that affect flow

- catheter against valve
- catheter too large for vein
- vasospasm
- kinked tube
- I.V bag too low - i.e. height of bag
- elevated arm
- thrombosis
- flexion
- tourniquet inadvertently left on
- amount of fluid in bag low
- line taped to tight - circulation restricted
Saline Lock

- allows for venous access without I.V fluid set attached
- used for patients that need extricated
- if only medications needed: good alternative (e.g. seizure patient)
- prevents fluid overload

Limitations
- can be time consuming
- catheter can become occluded
Equipment for saline lock

- 10 cc syringe
- NaHCL 10 cc nebul/vial
- lock device (prn adaptor)
- tourniquet
- IV catheter
- alcohol swab
- 2 x 2 dressing
- transparent dressing
- strips of tape (3-4) 4-6” long
- sharps container
Blood Tubing

- if anticipated that patient will need blood administration, it is recommended that one line be started using blood tubing
- will not be primary I.V line due to time
- needed for preparation
- 2nd I.V. access alternative
Buretrol

- used for Dopamine administration and intravenous therapy for children
- chamber holds 150 ml and is measured in 1 ml increments
- may or may not be used locally

Priming a Buretrol

- ensure all protective caps in place (top valve open)
- close all roller clamps
- fill cylinder with 30 ml of fluid
- use OSCAR method
 - Open clamp
 - Squeeze drip chamber
 - Close
 - And
 - Release
- prime rest of line
- fill cylinder to 100 ml
- piggy back dopamine into another line
Note: Some Base Hospitals allow for a 250 ml bag of NS with microdrip tubing for pediatric patients rather than a Buretrol
Pediatrics Vascular Access

- preferred site is the largest most accessible vein (arm, leg, hand, foot, scalp)
- access is difficult as veins collapse during shock and arrest
- may be necessary to attempt a blind insertion based upon prediction of anatomic location of vein
- 2 person job
- immobilize site with board and cling
- beware of fluid overload
- use Buretrol or 250 cc bag with microdrip tubing
- if volume replacement needed use macro set

Note: Some Base Hospitals allow for a 250 ml bag of NS with microdrip tubing for pediatric patients rather than a Buretrol
When not to start an I.V.

- when transport is a higher priority
- when you “think” the hospital may want one

- AV fistula – avoid same arm!!
 - Arterio-venous shunt in a hemodialysis patient
 - Starting an IV on the same arm will jeopardize hemodialysis treatment

- Mastectomy – avoid same arm
 - Lymph nodes in the arm on the same side may have been removed as part of the cancer treatment – if IV fluid goes interstitial, it won’t reabsorb well
Fistulas and Shunts

- hemodialysis access in arm for patients with chronic renal failure
- limited life span, limited number of sites, preserve each site as long as possible
- fistula identifiable by palpating for a “thrill” over site

once again…

DO NOT TAKE BLOOD PRESSURE OR PERFORM VENIPUNCTURE ON ARM WITH FISTULA
BE SHARPS-SMART
Sharps and needlestick injuries

What to do if you have an injury

- NOTIFY SUPERVISOR IMMEDIATELY
- COMPLETE INCIDENT REPORT AND DOCUMENTATION
- COMPLETE ACR DOCUMENTATION (if appropriate)
- SEEK MEDICAL ATTENTION
NEEDLESTICK POLICY

Ask for local policy

BASE HOSPITAL MEDICAL DIRECTIVES

Ask for local Standing Orders / Medical Directives
Well Done!

OBHG Education Sub Committee
Self-directed Education Program