Human Donor Milk: Current Experience

Dr Sharon Unger, MD, FRCP University of Toronto Mount Sinai Hospital

Objectives

- · Rationale for donor milk
- · Donor milk processing
- · Ongoing donor milk trial

AAP Policy

- "Banked human milk may be a suitable feeding alternative for infants whose mothers are unable or unwilling to provide their own milk."
- "Human milk banks in North America adhere to national guidelines for quality control of screening and testing of donors and pasteurize all milk before distribution."
- "Fresh human milk from unscreened donors is not recommended because of the risk of transmission of infectious agents."

Pediatrics 2005;115(2): 496-506

The Canadian Paediatric Society: Position Statement (Nov 2010)

- Pasteurized human donor milk is a recommended alternative when mother's own milk is not available
- Should be prioritized to compromised preterm and selected ill term newborns
- Informed consent

Paediatr Child Health 2010:15(9):595-598.

The Canadian Paediatric Society: Position Statement

- Milk banking should be adopted as a cost effective nutritional source for hospitalized neonates
- There is a need for prospective studies to evaluate the benefits of banked human milk
- The CPS does not endorse the sharing of unprocessed human milk

Paediatr Child Health 2010;15(9):595-598.

Media coverage

- · television, radio, print, on-line
- Postmedia news: Got breast milk? Doctors say milk bank would save babies' lives
- The Canadian Newswire: Donations of human milk could help sick, hospitalized newborns
- The Toronto Star: Pediatricians call for breast milk banks across Canada
- · The Ottawa Citizen: A different kind of bank
- The Edmonton Journal: Donations of breast milk save lives of premature babies: MDs
- The Toronto Star: Donor breast milk is 'greatest gift' for sick babies

Media Coverage: Milk Sharing

- · Postmedia News: Breast milk sharing 'very dangerous' but Canadian moms persist
- The Toronto Star: Breast-milk banks latch on to social media
- The Toronto Star: Health Canada urges caution in sharing breast milk if source is unknown
- The Vancouver Sun: Sharing breast milk not easy; Langley woman rebuffed in attempts to advertise on Craigslist

- "If you are considering feeding a baby with human milk from a source other than the baby's mother, you should know that there are possible health and safety risks for the baby. Risks for the baby include exposure to infectious diseases, including HIV, to chemical contaminants, such as some illegal drugs, and to a limited number of prescription drugs that might be in the human milk, if the donor has not been adequately screened. In addition, if human milk is not handled and stored properly, it could, like any type of milk, become contaminated and unsafe to drink."
- "FDA recommends against feeding your baby breast milk acquired directly from individuals or through the Internet"

da.gov/ScienceResearch/SpecialTopics/PediatricTherapeuticsResearch/ucm235203

Health Canada Raises Concerns About the Use of Unprocessed Human Milk

Information Update 2010-202 November 25, 2010

For immediate release

OTTAWA - Health Canada advises Canadians to be aware of the potential health risks associated with consuming human breast milk obtained through the Internet or directly from individuals.

http://www.hc-sc.gc.ca/ahc-asc/media/advisories-avis/_2010/2010_202-eng.php

Donor Milk: Rationale

- Increased survival of smaller VLBW infants
 - > 90% survive
- However, serious morbidity (eg. NEC, sepsis) and neurodevelopmental sequelae are inversely related to gestational age at birth

Interventions to reduce morbidity and promote normal brain development for VLBW infants are urgently required

Neurodevelopment of the VLBW Infant

- Factors in addition to gestational age shown to be prognostic of neurodevelopmental outcome:
 - ➤ sepsis
 - ≻NEC
 - >chronic lung disease
 - >suboptimal nutrient intake
 - ≻poor growth
 - >human milk feeding

Association Between Human Milk Intake and Development of ELBW Infants

- National Institute of Child Health and Development Glutamine Trial
- Extremely LBW infants ≻775 breast milk ≻260 no breast milk
- Bayley Scales of Infant Development
 - ≽18-22 months

Vohr et al. Pediatrics. 2006;118(1):e115-23.

•			
•			
•			
•			
•			
_			

• For each 10 mL/kg/d of breast milk:

TABLE 4	Effect of Breast Milk Feeding (Developmental Outcomes and Regression Results		
	Outcomes	Parameter Estimate	Р
MDI		0.53	.0002
PDI		0.63	<.0001
BRS		0.82	.0025
Logistic reg	ression	OR	95% CI
Rehospitalia	ration for infection or respiratory	0.94	0.90-0.98

Vohr et al. Pediatrics. 2006;118(1):e115-23.

Neurodevelopmental Outcomes Of VLBW Infants And The Role Of Mothers' Own Milk

- Mothers' own milk is thought to improve neurodevelopment because:
 - it is well tolerated facilitating optimal nutrient intake and substrate for brain development
 - indirectly via a myriad of bioactive components in breast milk that may reduce the incidence of sepsis, NEC, and other infections

Donor milk and sepsis

- 226 infants <2500g at high risk for infections (prolonged labour, prolonged ROM, maternal infection, unhygienic vaginal exam, birth asphyxia)
- Randomized to raw human milk, pasteurized human milk, raw milk with formula, pasteurized milk with formula
- Unethical to feed formula exclusively!

Narayanan et al. Lancet 1984;17(2):1111-3.

	I Raw EHM	II Pasteurised EHM	III Raw EHM + formula	IV Pasteurised EHM + formula
Number in group Number infected	57 6 (10·5%)	56 8 (14 · 3%)	56 9 (16·1%)	57 19 (33·3%)
Infections		,	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Septicaemia Diarrhoea	4	4	5 2	9
Pneumonia				2
Conjunctivitis	2	4	1	8
Pyoderma				1
Thrush Umbilical sepsis	2		1	2

An Exclusively Human Milk-Based Diet Is Associated with a Lower Rate of Necrotizing Enterocolitis than a Diet of Human Milk and Bovine Milk-Based Products.

- 12 participating NICU's (11 in US and 1 in Austria)
- Financially supported by Prolacta Biosciences
- Used donor milk and fortifier from Prolacta Biosciences
 - Fortifier provides minimum of 24 cal/oz (82 cal/100 mL)
 - Fortifies to a target of **2.3g of protein** in 100mL of nutrition
- Eligibility criteria:
 - BW 500 to 1250g
 - Intention to receive EBM

Sullivan S et al. J Pediatr 2010;156(4):562-7

Patient assignment

- HM100: EBM+donor milk+HMF at 100 mL/kg/day
- HM40: EBM+donor milk+HMF at 40 mL/kg/day
- BOV: EBM+preterm formula+bovine fortifier at 100 mL/kg/day

Sullivan S et al. J Pediatr 2010;156(4):562-7

ค		
L		

	16	□NEC			
	14 -	■ NEC Surg	jery	()	
	12 -				
nts	10			[7]	
% Infants	8 -		**		***
%	6 -	•	[5]		[8]
	4 -	[3]			
	2 -	(1)	(1)		[2]
	0 +	HM100	HM40	BOV	HM (100+40)
		[n=67]	[n=71]	[n=69]	[n=138]

NEC + death:

HM100= 6% HM40= 8.5% BOV= 20% P=0.02

OR for NEC with exclusively human milk diet of 0.23 (CI=0.08-0.66, p=0.007)

Sullivan S et al. J Pediatr 2010;156(4):562-7

Discussion

- Number needed to treat to prevent 1 case of NEC is 10 and to prevent 1 surgical case or death is 8.
- Vermont Oxford rate of NEC: 7-10%
- Lucas has reported a reduction in NEC in infants fed unfortified compared to fortified human milk
- An animal model for NEC requires intraluminal bovine casein

Sullivan S et al. J Pediatr 2010;156(4):562-7

Mothers of VLBW babies (Toronto)

- >97% of mothers of VLBW babies wish to provide expressed breast milk for their baby
- Only 30-50% of mothers have a full volume

Inadequate milk volumes

- Maternal factors: stress, illness, endocrine, unable to access medical care (for mastitis, domperidone)
- Infant factors: illness, continuous feeds, speciality formula
- Physical barriers: geographical distance, cost of pump, language barriers
- NICU factors: barriers between mom and baby, lack of privacy to pump at bedside, multi-patient rooms

History of Donor Milk Use

Image from SickKids Archives

- Wet Nursing
- 1909: 1st milk bank established in Vienna, Austria
- 1910: 1st North American Milk bank founded (Boston)
- 1943: AAP established standards for milk bank operations (collection, processing, storage and dispensing)
- Early 1980's 23 banks in Canada and 30 in the United States
- Late 1980's many milk banks closed 2° to concerns of viruses transmission
- 1985: Human Milk Banking Association of North America (HMBANA) established
- 2005: Prolacta (commercial entity)

Donor Milk Banking Worldwide

Brazil: 186+Norway: 15

United Kingdom: 15United States: 11

• Canada: 1

· Additional countries include:

Argentina, Australia, Bulgaria, Cameroon, Chile, China, Costa Rica, Cuba, Czech Republic, Denmark, Dominican Republic, Finland, France, Germany, Greece, India, Italy, Kuwait, Mexico, Netherlands, Nicaragua, Panama, Poland, Spain, Russia, Slovakia, South Africa, Spain, Sweden, Switzerland, Uruguay, Venezuela

http://www.internationalmilkbanking.org

Milk Donor Qualifications

- Must be healthy and provide milk beyond own baby's needs
- Non-smokers
- Other than limited list (eg. asthma inhalers, eye drops), no medications or illicit drug use
- Screened serologically for HIV-1, HIV-2, HTLV I/II, hepatitis C, hepatitis surface antigen, and syphilis no more than 6 months prior to 1st donation
- · Donors not paid

Processing Donor Milk To remove the potential Freezing, storage, and transport for transmission of infectious agents that Thawing and Bacterial culture could harm VLBW infants, donor milk is usually pasteurized Pasteurization (62.5°C for 30 minutes) Culture of batch Milk analysis Freezing Courier to institution

Impact of the Pasteurization Process

- Additional freeze/thaw and multiple container changes impact the energy and protein content of donor milk
 - -donor milk protein ~0.9 g/dl
 - -mother's own milk ~1.0-1.2 g/dl

Impact of Holder Pas	teurization: Nutrients
Protein	Minimal (one study a reduction; another a reduction in the essential amino acid lysine [30%])
Fat (50% of energy in human milk)	Minimal
•linoleic acid	Minimal
•linolenic acid	Minimal
•Monoglycerides	Minimal
•LCPUFA	Minimal
Lactose	Minimal
Minerals	Minimal
Vitamins	Water Soluble, some significant reductions (e.g vitamin C, folate); Vitamin A, Minimal

Amylase	15% loss of activity
B-cells, T-cells	Abolished
Bile salt dependent lipase	Abolished
CD14 (soluble)	Significantly reduced
Epidermal growth factor	No effect
Erythropoeitin	Significantly reduced
Immunoglobulins	Significantly reduced
IGF-1, IGF-2, IGF-BP2, 3	Significantly reduced
IL-10	Significantly reduced
Lactoferrin/iron-binding capacity	Significantly reduced
Lipoprotein lipase	Abolished
Lysozyme activity	No effect Slightly reduced
Oligosaccharides	No effect
TGF-α, TGF-β	No effect

Potential Risks and Benefits of Using Donor Milk as a Supplement: Cochrane Review

- ☐ A higher incidence of NEC among infants fed formula vs. donor milk (Relative Risk of 2.5 [95% CI, 1.2, 5.1])
- ☐ No longer significant when analysis restricted to trials where donor milk was provided as a supplement

Luther	Year	Subjects	Comparison	Blind	Primary entcome	Notes
Davies	1977	68 pretess (25-36 treeks)	Term formula vs Donor Milk	No	Slower growth first month for Donor Milk	Uncertain group for 2 infants with mothers' own milk
Deoss	1083	67 preferm (27-33 weeks)	Term formula vs Donor Milk	No	Slower generic for term Donor Milk (not preterm Donor Milk)	Indians with feed intolerance or NEC withdrawn from growth analysis
Luces	1984	(<1850g)	Pretens fressula vs Donor Milk	No	Slower growth for Donor Milk; no neurodevelopmental difference	
Lincon	1984	343 LBW (<1850g)	Pretessa formula vs Donor Milk	No	No neurodevelopmentd difference	
Reda	1976	106 LBW (<2100g)	Term formula vs Donor Milk	No	No difference in growth	
Schmiler	2005	173 porteon (<30 weeks)	Term formula va fortified Donor Milk	Yes	Shower general for Dosior Milk, no defference in infection events	Only fortified Donor Milk study; 20% cross-over from Donor Milk to Formula
Schnitz	1980	20 pretent	Term formula vs Donor Milk	No	No difference in weight gain	
Tyses	1983	81 LBW (<1500g)	Preterm formula vs Donor Milk	No	Slower growth for Donore Milk	Donor Milk not proteutzed : Randomized day 10: 5 affected inform withkness

Effect on NEC M-H,Fixed,95% CI 10.0 % 4.37 [0.50, 38.23] 5/173 21.0 % 246 [0.48, 12.49] Schanler 2005 10/88 5/78 55.3 % 1.77 [0.63, 4.96] Tyson 1983 5.7 % 2.53 [0.11, 60.39] Total (95% CI) 100.0 % 2.46 [1.19, 5.08] Heterogeneity: $Chi^2 = 0.99$, df = 4 (P = 0.91); $I^2 = 0.0%$ Test for overall effect: Z = 2.43 (P = 0.015) McGuire, Anthony. Arch Dis Child Fetal Neonatal Ed 2003;88:F11-F14.

Potential Risks and Benefits of Using Donor Milk as a Supplement: Cochrane Review

- □ Infants fed donor milk experienced slower weight (P<0.0001, length (P<0003) and head circumference gains (P<0.0001).
- Mean rate of weight gain was sub-optimal in 6 of 8 trials for donor milk

Onous	1983	67 preterm (27-33 weeks)	Term formula vs Donor Milk	No	Slower growth for term Donor Milk (not preterm Donor Milk)	Infants with feed intolerance or NEC withdrawn from growth analysis
Lucas	1984	(<1850g)	Pretern formula vs Donor Milk	No	Slower growth for Donor Milk; no neurodevelopmental difference	
Lucas	1984	343 LBW (<1850g)	Preterm formula vs Donor Milk	No	No neurodevelopmental difference	
Reilie	1976	(<2100g)	Term formula vs Donor Milk	No	No difference in grewth	
Schmler	2005	173 preterm (<30 weeks)	Term formula vs fortified Donor Milk	Yes	Slower growth for Donor Milk, no difference in infection events	Only fortified Donor Milk study; 20% cross-over from Donor Milk to Formula
Scholtz	1980	besprain 50	Term formula vs Donor Milk	No	No difference in weight gain.	
Tyson	1983	81 LBW (<1500g)	Preterm forunds 112 Donor Milk	No	Slower growth for Donor Milk	Donor Milk not pasteurized : Randomized day 10: 5 affected infants withdrawn.

1	2	

Limitations of Studies in the Cochrane Review

□Studies not blinded

☐7 of 8 studies in meta-analysis do not reflect current clinical practice

- >25 years ago
- Larger babies
- Predominance of formula versus mothers' own milk feeding
- No nutrient fortification of mothers' own milk
- Only two studies looked at long term follow-up

Donor Milk for Improved Neurodevelopmental Outcomes

DoMINO Project

Hypotheses:

Primary:

☐ improve cognitive development at 18-24 months CA

Secondary:

- ☐ reduce neonatal mortality and morbidity
- ☐ support growth
- ☐ Improve visual development at 4 and 6 months CA

Study Design

- Multi-centered double-blinded RCT
- Infants randomized within 4 days of birth
- Duration of 90 days or until hospital discharge

Inclusion Criteria

□<1500 g birth weight

□Singleton or multiples

The Intervention

- ☐ Receive either pasteurized donor human milk (PDM) or preterm formula when mothers' own milk is unavailable
- ☐ Infants will continue to receive PDM or preterm formula after transfer to a participating Level II NICU in the GTA for 90 days after randomization or discharge home, whichever occurs first
- □ PDM will be purchased and shipped on ice from the Mothers' Milk Bank of Ohio
 - Backup: Bronson Mothers' Milk Bank
 - Transition to Ontario Human Milk Bank as comes on line

•	
-	

	Pasteurized Human Donor Milk	Preterm Formula* (Similac Special Care 20 or 24 kcal/ oz [3.6 g protein/100 kcal] [Abbott Laboratories] o Enfamil Premature Formula 24 kcal/oz [3.0 g protein/100 kcal] [Mead Johnson Nutritionals]
Initiation of enteral feeding	Day 1-7	Day 1-7
Volume of feeding at initiation	10-20 ml/kg/d (hold volume for 3-5 days)	10-20 ml/kg/d (hold volume for 3-5 days)
Rate of feed advancement	10-20 ml/kg/day	10-20 ml/kg/day
Fortification to commence at \geq 120 ml/kg/day using milk pumped \geq 10 days after parturition+	Human milk fortifier ([Enfamil Human Milk Fortifier, Mead Johnson Nutritionals] or [Similac Human Milk Fortifier, Abbott Laboratories])	Not Applicable
Volume	150-200 ml/kg/d to achieve a weight gain of ≥ 15 g/kg/day	150-200 ml/kg/d to achieve a weight gain o ≥ 15 g/kg/day
Minimum protein dose to be provided once (or up to 3 days after) volume reaches ≥ 150 ml/kg/d	3.0 g/kg/d	3.0 g/kg/d
At 24 kcal/oz, and weight gain < 10 g/kg/d, for 7 days	Concentrate feeding using a multi- nutrient modular to 26-27 kcal/oz	Concentrate feeding using a multi-nutrient modular to 26-27 kcal/oz
At 27 kcal/oz and weight gain < 10 g/kg/d for 7 days	Concentrate feeding using a multi- nutrient modular to 30 kcal/oz	Concentrate feeding using a multi-nutrient modular to 30 kcal/oz
At 30 kcal/oz and weight gain < 10 g/kg/d, for 7 days	Remove from feeding protocol	Remove from feeding protocol

Health Economics

Objectives:

- ☐ To use measured costs in conjunction with trial efficacy data to estimate the cost of a 5-point improvement in the Bayley through use of PDM in VLBW infants
- ☐ To use decision-analytic modeling and secondary literature to estimate long-term health and non-health costs, as well as quality of life outcomes per quality adjusted life year.

Economic gains resulting from the reduction in children's exposure to lead in the US

- IQ increase 2.2 to 4.7 points in 20 years of lead reduction
- Each IQ point raises worker productivity 1.76-2.38%
- 2 y/o lifetime earnings in 2000 dollars (US): \$723,300
- 3.8 million children per year
- \$110 to \$319 billion per year's cohort

Grosse et al. Environ Health Perspect 2002;110(6):563-9.

C				

- Strategies are required to reduce morbidity and improve neurodevelopment of VLBW infants
- Strong evidence that human milk (mothers' own, donor milk) may be an important strategy
- Order of benefit: Mothers' own milk >> donor milk >> formula
- ☐ First priority to promote mother's own milk production

Conclusion

- $oldsymbol{\square}$ Meta-analysis suggests donor human milk:
 - □Reduces NEC
 - □Slows both linear and head growth
- ☐ To promote expansion and on-going support of the use of donor milk
 - ☐Need studies that include smaller babies, mixed feeding and current clinical practices
 - □With growing health care costs, a systematic approach to understanding the cost associated with feeding type is required

•		
•		
•		
·		
•		
•		

Future directions

- Better pasteurization methods for donor milk that are effective in eliminating known pathogens while preserving bioactive components?
- Should donor milk not be pasteurized?
- Human milk fortifiers?