

Pediatric Respiratory Distress

Dr. Karen Forward Dr. Mike Peddle

- Discuss epidemiology & causes of respiratory distress in pediatric patients
- Identify differences between the pediatric and adult airways
- Correctly apply the Advance Life Support Patient Care standards in this patient population
- Discuss benefits and risks of common prehospital treatments for pediatric respiratory distress (i.e. Epi, Salbutamol, Intubation).

Case

- 3 year old male.
- CC: "Breathing Problems"
- HPI:
 - Unwell with URTI symptoms earlier today
 - Woke up from sleep with increased W.O.B, "noisy" breathing"
- PMHX:
 - Healthy
- Meds:
 - None
- Allergies:
 - None

www.lhsc.on.ca/bhp

On scene

- You and your partner arrive on scene
- Cats x 6
- + Cigarette smoke
- Kid looks slightly pale, exhibiting increased WOB (TT, SCM use, IC/SC indrawing) when distressed, hoarse voice. Distress minimal when with mom.
- HR 150, RR 28, O2 sat-93%, BP 78/40, T 38.5
 now what?

EPIDEMIOLOGY AND COMMON CAUSES OF PEDIATRIC RESPIRATORY DISTRESS

Pediatric Respiratory Distress

- A common "chief complaint"
- Accounts for ~10% of pediatric emergency department visits
- Important cause for hospitalization:
 - ~20-30% of admissions to the PCCU
- Important cause of mortality:
 - One of the top 5 causes of death in pediatric patients
 - ~20% of infant deaths

Respiratory Distress – features

- Respiratory Distress look for:
 - Increased work of breathing
 - Nasal flaring
 - Tracheal Tub
 - Intercostal Indrawing
 - Subcostal indrawing
- Abnormal Rhythm
 - i.e. Gasping
- Abnormal Rate
 - Too fast
 - Too slow

Causes of Shortness of Breath

- Airway
- Respiratory
 System/ Lungs
- Cardiovascular
 System
- Miscellaneous:
 - Metabolic
 - Anemia
 - Hyperventilation
 - Poisoning
 - CNS problem (i.e. Guillian Barre)

Airway

- Obstruction
 - Foreign body
 - Angioedema
 - Anaphalaxis
- Infectious
 - Croup viral
 - Epiglottitis
 - Abscess
 - Other i.e. Diptheria
- Trauma

Breathing

- Infectious:
 - Pneumonia bacterial/viral
 - Croup (laryngotracheobronchitis)
 - Bronchiolitis
- Idiopathic:
 - Asthma
 - "Reactive Airways Disease"
 - Pneumothorax
- Traumatic:
 - Pneumothorax (tension or simple)
 - Hemothorax +/- Rib Fractures/Flail Chest
 - Pulmonary Contusion

Cardiac

- Arrhythmias:
 - SVT HR >220 bpm, no "P waves"
- Congenital Cardiac Anomalies with heart failure:
 - Present with "Tachy, Tachy, Megaly, Megaly"
 - Tachycardia
 - Tachypnea
 - Cardiomegaly
 - Hepatomegaly
 - Usually < 1 year of age.

DIFFERENCES BETWEEN PEDIATRIC AND ADULT AIRWAYS

Why can children be scary?

- Fatigue easily & decompensate quickly
- Small airways
 - High resistance!
 - Lower residual capacity
- High metabolisms so need a lot of O2
- Inadequate compensatory mechanisms
 - Chest wall not very muscular
 - Have trouble increasing Tidal Volume

Why can children be scary?

- Decreased respiratory reserve
- Infants are "nose breathers", block nose = resp. distress

Also:

• Their anatomy = different than adults

Airway Anatomy: Child

Children's Airway Considerations

- Head large occiput
- Tongue relatively large
- Adenoids +tonsils = big
- Epiglottis floppy, omega shaped
- Narrowest portion cricoid ring

Prominent occiput

Reproduced from: Santillanes, G, Gausche-Hill, M. Pediatric airway management. Emerg Med Clin North Am 2008; 26:961. Illustration used with the permission of Elsevier Inc. All rights reserved.

Nagler, J., Wang, V. J., Stack, A. M., Willey, J. F. Airway management in children: Unique pediatric considerations. UpToDate. Last Updated: April 7, 2011. Retrieved: October 18, 2011. From: http://www.uptodate.com

Respiratory Anatomy

- Larynx:
 - High and anterior (C3-4) in children vs.
 C4-5 in adults
- Trachea:
 - Compressible
 - Narrow
 - "Sniff Position" in infants is preferred

...back to our case

• You sit the child in the back of the truck and note progressive increased work of breathing as well as a loud "Barky" cough

BASIC AND ADVANCE LIFE SUPPORT PATIENT CARE STANDARDS

History of URTI AND "<u>Barking Cough</u>" & "<u>Stridor</u>" at rest with "<u>severe</u> respiratory distress" AND HR < 200 bpmAnd < 8 years

- Treat with 100% oxygen, NEB EPI (1:1000) @ 6-8Lpm according to weight
- Vital signs q5min

www.lhsc.on.ca/bhp

Croup & Croup Score

- What is "Severe respiratory Distress?"
- Two common severity scales:
 - Alberta Clinical Practice Guideline Working Group
 - Westley score

Alberta Croup Severity Scale

- Mild :
 - occasional bark, no stridor at rest, minimal/no retractions
- Moderate:
 - frequent bark, stridor at rest, increased WOB at rest, no/mild agitation
- Severe:
 - above with agitation, may have insp and expiratory stridor
- Impending Failure:
 - severe + lethargy

Westley croup score

	0	1	2	3
Insp. Stridor	None	With Agitation	At rest	
Retractions	None	Mild	Moderate	Severe
Air Entry	Normal	Mild dec.	Marked Dec	
LOC	Normal	Depressed LOC + 5		
Cyanosis	None	With Agitation + 4, At rest +5		

<u>Total Score:</u> < 3 points = Mild 3-6 points = Moderate >6 points = Severe

Westley et al. 1978

SOB/ Respiratory Distress

Respiratory Distress AND Wheezing

Treatment:

- 100% O2
- CR monitoring + O2 sat monitor
- Salbutamol
 - MDI: 6puffs <25kg OR 8 puffs if >25kg
 - NEB if afebrile, "SRI", < 1yr, neurologic disease, severely ill.
- Transport to hospital

SOB/Respiratory Distress

- Vitals q5min
- If not significantly better can repeat x 2

Beware the <u>"SILENT CHEST</u>"

Very severe bronchoconstriction = no wheeze
Consider Epi!
Follow Mod -to-Severe protocol

BENEFITS AND RISKS OF COMMON PRE-HOSPITAL TREATMENTS

Epinephrine

- Indications:
 - Cardiac Arrest
 - Asystole/PEA
 - Pulseless VT/VF (after failed defib).
 - Bradycardia
 - Bronchodilation
 - Anaphalaxis
 - Moderate-Severe Respiratory Distress
- Routes:
 - S/C, IM, ETT, inhalation

Neonatal Lexi-Drugs Online, 2011

Epinephrine

- Pathophysiology:
 - Stimulates α and β 1adrenergic receptors
 - Increased HR and BP
 - Stimulates β2 receptors
 - Relaxation of bronchial smooth muscle
 - Large doses:
 - Stimulate skeletal and vascular smooth muscle contraction
 - HTN
- Effects occur within:
 - 1 minute for inhalational forms
 - ~5-10 minutes for subcutaneous

www.lhsc.on.ca/bhp Neonatal Lexi-Drugs Online, 2011

Epinephrine

- Contraindications:
 - Life-threatening situation: no contraindications
 - Non-life threatening:
 - Hypersensitivity
 - Cardiac arrhythimas
 - Acute angle-closure glaucoma
 - Note: may raise Glucose levels in diabetics

Salbutamol

- Indications:
 - Asthma
 - Exercise-induced bronchospasm
- Routes:
 - Inhalation, MDI, Oral (not recommended), IV (ICU)
- Pathophysiology:
 - Acts on B2 receptors to induce bronchial smooth muscle relaxation

Neonatal Lexi-Drugs Online, 2011

Salbutamol

- Side Effects:
 - Tachycardia
 - Tremors
 - Insomnia
 - Hyperactivity
 - Others

Contraindications:

Allergy to Salbutamol

Neonatal Lexi-Drugs Online, 2011

Mod -to-Severe Asthma Protocol

- Severe SOB from suspected asthma AND requiring BVM AND/OR severe agitation, confusion, cyanosis
- History of Asthma

Treatment:

- O2 + BVM (if necessary)
- CV monitor + O2 sat monitoring
- EPI (1:1000) SC/IM (0.05mg to 0.5mg wt based).

...back to our case

- You administered nebulized epinephrine as per Croup Protocol.
- The child now appears very pale, RR 8, poor respiratory effort, O2 saturation 88%

Intubation

- Indications:
 - Inadequate oxygenation or ventilation
 - Inability to maintain airway
 - Inability to protect airway
 - Potential for deterioration (i.e. burn victim, overdose).

...to name a few...

Considerations

- May be difficult to assess airway
 - i.e. Mouth opening, Mallampati score
- Should look for signs of possible difficult airway:
 - Retrognathia (i.e Pierre Robin Sequence large tongue, small chin)
 - Cleft lip/Palate
 - Down syndrome
 - Low tone, Atlantoaxial instability

Intubation

- RSI medications
 - Atropine as pre-medication <5 years
 - Sedative + Paralytic
- Infants:
 - Should roll
 - "Sniff Position"
- Tube:
 - Neonates : 3.5
 - Uncuffed Tube Size: (Age/4) + 4
 - Cuffed Tube Size: (Age/4) + 3
- Insertion Depth:
 - Tube size x 3 at teeth

Uptodate, 2010

Complications:

- Failed Intubation
 - "Failed" after 3 attempts
- Tube Problems displacement, obstruction, in esophagus
- Trauma local, barotrauma
- Pneumothorax
- Aspiration Pneumonia vomiting, gastric distension
- Hypoxia
- Bradycardia

Summary

- "Kids are not small adults"
 - Unique anatomy
 - Unique pathophysiology
- Respiratory Distress has many causes
 - Not just croup & asthma even though these are common
- Epinephrine, Ventolin not without side– effects, however, benefits generally outweigh risk.

References:

- Nagler, J., Wang, V. J., Stack, A. M., Willey, J. F. Airway management in children: Unique pediatric considerations. UpToDate. Last Updated: April 7, 2011. Retrieved: October 18, 2011. From: http://www.uptodate.com
- The Alberta Clinical Practice Guideline Steering Committee. 'Guideline for the diagnosis and management of croup.' Alberta Medical Association Practice Guideline Website. August, 2003.Accessed October 19, 2011 {http://www.albertadoctors.org/bcm/ama/amawebsite.nsf/AllDoc/87256DB000705C3F87256E05005534E2/\$Fil e/CROUP.PDF}
- Westley C, Cotton E, Brooks J. Nebulized racemic epinephrine by IPPB for the treatment of croup. Am J Dis Child 1978; 132: 484
- Pediatric and Neonatal Lexi-Drugs Online : EPINEPHrine (Systemic, Oral Inhalation). Retrieved October 18, 2011, from http://online.lexi.com/crlsql/servlet/crlonline
- Pediatric and Neonatal Lexi-Drugs Online : Albuterol. Retrieved October 18, 2011, from http://online.lexi.com/crlsql/servlet/crlonline London Health Sciences Centre

Southwest Ontario Regional Base Hospital Program

References

 Nagler, J., Wang, V.J., Stack, A.M., Wiley, J.F. Emergent endotracheal intubation in children. UpToDate. Updated: December 7, 2010. Accessed: October 18, 2011. http://www.uptodate.com

