Paramedic Rounds

Pre-Hospital Continuous Positive Airway Pressure (CPAP)

Morgan Hillier MD Class of 2011
Dr. Mike Peddle Assistant Medical Director
SWORBHP

www.lhsc.on.ca/bhp
Objectives

• Outline evidence for pre-hospital CPAP
• Describe normal pulmonary anatomy and physiology
• Describe abnormal pulmonary A&P leading to acute respiratory emergencies
• Describe the mechanism of action of CPAP
• Describe the indications, conditions and contraindications for pre-hospital CPAP
• Describe approach to monitoring a patient receiving CPAP and possible complications
Why CPAP in EMS?

- Hubble MW et al. (2006)
 - Compared to similar EMS systems
 - System with CPAP protocol showed
 - Decreased intubation rate
 - Decreased mortality
 - Decreased hospital length of stay
Why CPAP in EMS?

• Thompson J et al (2008)
 • Randomized controlled trial
 • Patients randomized to CPAP treatment group:
 • Decreased intubations
 • Decreased mortality

• No studies have shown evidence of harm
The Respiratory System

- **Architecture of the lung**
 - similar to an inverted tree-like structure with progressively smaller airways
 - Leads to terminal bronchi and alveoli
The Respiratory System

• Alveoli
 • The Functional units of respiration
 • Contain surfactant
 • Liquid which decreases surface tension
 • Prevents alveoli from “sticking together”
 • Alveolar collapse leads to decreased lung volume
 • Decreased blood oxygen (hypoxemia)
 • Increased blood CO2 (Hypercarbia)
The Respiratory System

- Muscles of Respiration
 - Diaphragm exerts negative pressure on Lungs
 - Intercostal muscles cause chest excursion
 - Exhalation is a passive process (elastic recoil)
The Respiratory System

• **Respiratory Distress:**
 • Accessory muscles such as sternocleidomastoids and scalenes increase chest excursion
 • At rest, healthy person uses ~4% of oxygen to fuel respiratory muscles
 • During acute respiratory emergency, may use up to 20% of oxygen to fuel respiratory effort
 • Increased oxygen demand with work of breathing
Pathophysiology

• Common conditions leading to resp distress:
 • Cardiogenic Pulmonary Edema
 • Chronic Obstructive Pulmonary Disease
 • Asthma
 • Pneumonia
Cardiogenic Pulmonary Edema

- Secondary to congestive heart failure (CHF)
- Left ventricular failure leads to backward pressure and vascular congestion in lungs
- Increased hydrostatic pressure causes leakage of fluid into alveoli
- Reduces gas exchange leading to hypoxia
- “washes out” surfactant leading to alveolar collapse (atelectasis)
Pulmonary Edema

Decreased gas exchange due to fluid build up and alveolar collapse
Acute Pulmonary Edema

• Patient short of breath with increased work of breathing and diffuse inspiratory crackles in all lung fields
• Potentially decreased air entry at bases due to alveolar collapse (atelectasis)
• Patient often has history of coronary artery disease and or cardiac risk factors such as HTN, DM, Hyperlipidemia and family cardiac history
Chronic Obstructive Pulmonary Disease

- Pt has chronic airway disease elicited on history usually with a history of long-term cigarette exposure
- **Bronchitis** – chronic inflammation characterized by scarring of airways and increased mucous production
- **Emphysema** – characterized by loss of elasticity of lung parenchyma with destruction of alveoli
COPD
COPD Exacerbation

- Usually precipitated by respiratory infection
 - Acute SOB
 - Increased work of breathing
 - Excess secretions (CLEAR productive cough)
 - Potentially leads to respiratory failure
Asthma

• Bronchospasm secondary to irritant or allergic stimulus

• Patient presents with
 • Expiratory wheeze
 • May progress to insp/expiratory wheeze
 • Eventually silent chest with no appreciable ventilation to affected area of lungs
Asthma

• Patient has history of asthma and often a recognized inciting event (“trigger”)
• Treated with bronchodilators and 100% oxygen via NRB mask
Pneumonia

- Bacterial, viral or fungal infection of the lung
- Generally a focal area of infection
- Patient presents with
 - Fever
 - productive cough
 - localized chest pain
 - focal inspiratory crackles
Non-Invasive Positive Pressure Ventilation (NIPPV)

- Continuous Positive Airway Pressure (CPAP)
- Bi–level Positive Airway Pressure (BIPAP)
How does CPAP work?

• Tight fitting mask controlled by a regulator with high-flow oxygen

• Flow restriction device on exhalation port exerts continuous positive pressure on airways
Main Effects

- Splints airways open
- Positive pressure decreases leakage of fluid into alveoli
- Positive pressure decreases work of breathing and oxygen requirements
- Improves cardiac function by decreasing preload and afterload on the heart
Cardiogenic Pulmonary Edema

• CPAP:
 • Decreased leakage of fluid into lungs
 • Splints airways
 • Decreases work of breathing/O2 Requirements
 • Decreases atelectasis
COPD

- **CPAP:**
 - Splints airways
 - Decreases atelectasis
 - Decreases work of breathing and oxygen requirements
Asthma

• CPAP Contraindicated!

• Air-trapping/hyperinflation
• Potential to do harm
• Focus on bronchodilators and 100% oxygen
Pneumonia

• CPAP Contraindicated!
CPAP Indications

- Patient awake and able to follow commands
- Meets at least two of the following:
 - Resp rate 24 or greater
 - SpO2 less than 90%
 - Accessory muscle use
- AND with signs and symptoms consistent with
 - Exacerbation of chronic obstructive pulmonary disease
 - Acute pulmonary edema
CPAP Conditions

- Age 12 years or greater
 OR
- Weight 40Kg or greater
CPAP Contraindications

- Resp distress due to other medical condition
 - Asthma
 - Pneumonia
- Condition that may be worsened by CPAP
 - Pneumothorax
 - Systolic BP <90
 - Major trauma or burns (face, neck, chest, abdo)
CPAP Contraindications

• Other intervention required
 • Unable to cooperate, decreased mentation, inability to sit upright
 • Unable to maintain airway, intubated patient, facial abnormality, tracheostomy
 • Resp rate < 8
 • Cardiac arrest
Patient Monitoring

• Assess for:
 • Decreased Respiratory Rate
 • Increased SpO2
 • Subjective improvement in dyspnea
 • Decreased anxiety

• Vitals q5min with particular attention to:
 • Blood pressure
 • Adequacy of ventilation
Complications

- Hypotension
- Conversion of pneumo to tension pneumo
- Airway obstruction
- Requires continuous oxygen supply
- Relies on patient's respiratory rate
- Intolerance of mask
- Vitals q5min and constant patient monitoring!
Questions???