

12-Lead ECG & STEMI

Dr. Karalyn Church Emergency Medicine Resident, PGY5

Objectives

Given this Webinar Presentation, the Paramedic will be able to:

- Describe the anatomy and pathophysiology associated with cardiac ischemia, injury and infarct.
- Relate the appropriate steps for acquisition of a 12 Lead ECG.
- Identify the presence of a STEMI and determine the location of the MI on 12 Lead ECGs

Conduction Pathway

Coronary Arteries

- Branch off of the Aorta, above the Aortic Valve
- Two major arteries, plus main branches
- Look at 3 specific arteries Right Marginal Artery, Left Anterior, and Left Circumflex
- Each supplies a specific area

Right Marginal Artery

- Inferior wall of Left Ventricle
- Posterior Left Ventricle
- Right Ventricle
- Posterior fascicle of LBB
- SA (40-50%) & AV Node (85-90%) of population

Left Anterior Descending

- Anterior and part of lateral wall of Left Ventricle
- Major pumping mass of Left Ventricle
- Septum
- Bundle Branches
- Sudden occlusion of the LMCA leads to sudden death (from massive infarction)

Left Circumflex Artery

- Upper lateral wall of LV (I and aVL)
- SA Node in 45%
- AV Node in 10%
- Posterior fascicle of LBB

Electrical Flow

- Towards the +ve electrode: Upward Deflection on ECG
- Away from the +ve electrode: Downward Deflection on ECG

ECG Paper

- Vertical Lines: Time (ms) in mm
- Horizontal Lines: Voltage (mV) in mm

- Light lines/small boxes are 0.04s (1mm) apart
- Dark lines/large boxes are 0.2s (5mm) apart
- 5 Dark squares are 1s (small lines at the top of the ECG paper)

TP Segment

ST Segment

What to look for

ST Segment Elevation

- \geq 1mm in limb leads
- \geq 2mm in chest leads
- Present in 2 anatomically contiguous leads

Contiguous Leads

• Limb leads that "look' at the same area of the heart

OR

Numerically consecutive chest leads

Electrode Placement

- $V1 4^{th}$ intercostal space to the right of the sternum
- $V2 4^{th}$ intercostal space to the left of the sternum
- V3 directly between leads V2 and V4
- $V4 5^{th}$ intercostal space at the midclavicular line
- V5 level with lead V4 at left anterior axillary line
- V6 level with lead V5 at left midaxillary line

12 Lead

- S-Septal V1, V2
- A-Anterior V3, V4
- L-Lateral V5, V6, aVL, I
- I-Inferior II, III, aVF

High Lateral Reciprocal changes II, III, aVF	aVR	V1 Septal Reciprocal changes I, III, aVF	V4 Anterior Reciprocal changes II, III, aVF
Inferior Reciprocal changes I, aVL, v-leads	aVL High Lateral Reciprocal changes II, III, aVF	V2 Septal Reciprocal changes II, III, aVF	V5 Lateral Reciprocal changes II, III, aVF
Inferior Reciprocal changes I, aVL, V-leads	aVF Inferior Reciprocal changes I, aVL, V-Leads	V3 Anterior Reciprocal changes II, III, aVF	V6 Lateral Reciprocal Changes II, III, aVF

AMI Localization

I	aVR	V1	V4
II	aVL	V2	V5
ш	aVF	V3	V6

AMI Localization

Inferior Wall

AMI Localization

Lateral Wall

- I, aVL
- Left arm
- V5, V6
- Left lateral chest

Lateral Wall

AMI Localization

Anterior Wall

AMI Localization

Septal Wall

- A Normal
- B Initial ischemia
- C Injury
- D Infarct
- E Reperfusion with residual ischemia
- F New Normal

Evolution of Acute MI

Evolution of Acute MI

- Peaked T wave
- ST Depression
 - T wave inversion
- ST Elevation
- Q wave

Hyper Acute T Waves

- Tall and peaked within minutes of blood flow interruption
- Earliest ECG sign of AMI
- Could manifest as ST depression or inverted T waves

Differential Dx:

- hyperkalemia
- BER
- LVH

Hyper Acute T Waves

Ischemia

- Inadequate oxygen to tissue
- Subendocardial
- Represented by ST depression or T inversion
- May or may not result in infarct

Ischemia – ST Depression

Injury

- Prolonged ischemia
- Transmural
- Represented by ST elevation
- Usually results in infarct

Injury

Infarct

- Death of tissue
- Represented by Q wave
- Not all infarcts develop Q waves

Q Waves

Physiologic Q waves
< .04 sec (40ms)
Pathologic Q waves
≥.04 sec (40 ms)

Q Waves

Reciprocal Changes (RC)

Occur in larger MI

- Able to "see" the MI on the opposite side because it is larger
- RC's make the STE more likely to be due to AMI

Reciprocal Changes

London Health Sciences Centre Southwest Ontario Regional Base Hospital Program

Reciprocal Changes

A "normal" 12-lead ECG <u>DOES NOT</u> rule out AMI

• Early AMI may have no STE but may evolve over time

Non STEMI AMI have non specific but abnormal ECGs

Why can't AMI be ruled out?

- PHECG has high specificity for STEMI = 97%*
- Meaning = when PHECG shows STEMI it almost always turns out to be an AMI.
- PHECG has only moderate sensitivity for AMI = 68%
- No STEMI on PHECG 68% = NO AMI

Source: Ioannides JA et al. Accuracy & clinical effect of out-of-hospital ECG in the diagnosis of acute cardiac ischemia: a meta-analysis. *Annals of Emergency Medicine 2001;37.*

12 Lead Summary

What are you looking for?

- \geq 1mm of ST elevation in limb leads
- <u>></u> 2mm of ST elevation in chest leads
- Two contiguous leads
- Know <u>where</u> you are looking
- Positive electrode as an "eye"
- Memorize lead locations

Imitators:

- BBB
- LVH
- Ventricular beats
- Pericarditis
- Early Repolarization
- Others

Bundle Branch Block

Unaffected bundle branch depolarizes normally
Diseased bundle branch does not deliver the impulse to the ventricle
Wave of depolarization spreads from the unaffected side, to the other ventricle
It takes longer to depolarize in this fashion, so the QRS is widened

Conduction System

Bundle Branch Block – Identification

•Supraventricular rhythm in origin

•Wide QRS (120ms or more)

Bundle Branch Block

Wide looking QRS with <u>notching</u>
Look for QRS duration in 12 Lead info section at top of printout

•Determine LBBB or RBBB in a wide complex SVT by using VI

Bundle Branch Block

Use VI
Circle the J point
Find the terminal deflection
Shade in an arrowhead pointing up or down
Apply "turn signal"

STEMI Bypass Protocol

- May vary depending on locality
- Will be provided to each service as they enter into STEMI Bypass agreements

Questions

- Contact SWORBHP
 - 519-667-6718
 - ParamedicEducation@lhsc.on.ca

References

• Material and graphics adapted with permission from:

12-Lead ECG Interpretation Patricia Pratt, NR-LP Charles Garoni, NR-EMT-P Department of EMT University of Texas Health Science Center

