Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy in a Porcine Model

Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster
CSTAR and the University of Western Ontario, London, Ontario, Canada

1. Introduction
We set out to see if permanent interstitial brachytherapy seeds could be safely and reproducibly inserted thoracoscopically with the ZEUS Robotic system and intraoperative ultrasound into in-vivo porcine lungs.

2. Methods
Six acute pigs underwent robot assisted thoracoscopy using the ZEUS™ system. A 30° endoscope with video camera was manipulated using the voice activated AESOP™. The Cook brachytherapy needle was inserted into the lung parenchyma using one of the ZEUS robotic arms.

3. Results
All 8 animals survived the procedures without intraoperative bleeding or air leaks. The ZEUS system performed well and was able to remotely manipulate the ultrasound transducer and needle to allow deployment of the seeds. The ultrasound images were of good quality and visualized the needle insertion and seed deployment. There was no evidence of seed migration in the two chronic animals.

4. Conclusion
We have demonstrated that interstitial brachytherapy seeds can be safely inserted into lungs using the ZEUS robotic system with ultrasound image guidance.